Software

OPENMP* ANALYSIS IN INTEL" VTUNE™ AMPLIFIER XE -

TALKING TO AUSER ABOUT OPENMP™ PERFORMANCE IN THE LANGUAGE THE
PROGRAM WAS WRITTENIN,

WITHALITTLE WANDER INTO VECTORIZATION TOO

Material from Dmitry Prohorov, VTune HPC lead
Zakhar Matveev (Intel® Advisor Architect) and Alex Shinsel
Presen ted by Jim Cownie

Agenda

VTune Amplifier XE OpenMP* Analysis: answering customers’ questions about
performance in the same language their program was written in

= Concepts, metrics and technology inside
» VTune Amplifier XE OpenMP Analysis Workflow
A short introduction to Intel® Advisor's Roofline Analysis

Summary

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Typical customer questions on parallelization efficiency of

OpenMP* application

S

“| put pragmas but why is my
speed up so poor?”

» Parallelization inefficiency

“| ran my app on a system with
more cores but it doesn't run as
efficiently as on a smaller one”

= Scalability issues

Is the serial time of my application significant
in preventing scaling?

How efficient is my OpenMP parallelization?

. : If inefficient, how much gain can be achieved if |
ecomposing . .)
the questions invest in fighting the inefficiencies?

Which OpenMP regions/loops/barriers are
worth tuning?

» What are their particular problems?

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

OpenMPCon 2018

If Performance Information is OpenMP “Unaware”

The questions are tied to OpenMP program structure — #pragmas
Answers should be given the same way to be understandable and actionable

- Advanced HOtSPOtS H(]tSPHtS viewpoint { mn) # Advanced Hotspots Hotspots viewpoint (change)
ion L'::":_:J Grouping: | Function / Call Stack
% Bl
Elapsed Time: 11.191s et ot s CPU_ Instructions CPI
Time Retired Rate
Instructions Retired: 376,767,5559 o
— O N = tompspn@sia | 72400 1361930000920]
—) .) —__kmp_wait_template<kmp_flag_64> 61.113s 160,996,999,551 1.133
The CPI may be too high. This could be caused by issues such as m ~I% kmp_flag_64::wait ¢ __kmp_hyper_barrier_release 61.111s 160,989,997,423 1.133
instructions. Explore the other hardware-related metrics to ident = __kmp_barrier 60.979s 160,645,659,445 1.133
Wait Rate: 0 299 =% __kmpc_barrier 59.732s 157,354,278,820 1.133
" conj_grad_$omp%parallel@514 < __kmp_invoke_microtas 58.203s 152,713,602,610 1.137
CPU Frequency Ratio: 1.109 * sparse ¢ makeas MAIN__ompparallel@185¢ __kmp_in 1.117s 3,529,551,310 0.946
PBUSEd -l—lme, OS T makea+ MA\N,,umpparaLLel@185<— —_kmp_invoke _micg 0.412s 1,111,124,900 1.099
~ __kmpc_reduce+ conj_grad_$omp%$parallel@514 < __kmp. 1.215s 3,205,687,474 1.127
@ CPU Time: 259.986s +F __kmpc_reduce_nowait 0.032s 85,693,151 1.115
* __kmp_fork_barrier = __kmp_launch_thread < [OpenMP wor 0.132s 344,337,978 1.143
t =% __kmp_hyper_barrier_release< __kmp_barrier 0.002s 7,002,128 0.953
© __kmpc_barrier < conj_grad_$omp#parallel@514 < __kmp_ir| 0.001s 4,698,398 0.947
. e __kmpc_reduce < conj_grad_ompparallel@514 ¢ __kmp_| 0.001. 2,303,730 0.966
OpenMP “unaware” views of VTune Amplifier XE mpe-reduce conj-grad-Tomprparalisl@ P 2
. +__kmp_wait_template<kmp_flag_64> 11.241s 27,962,658,587 1.199
Difficult to detect problems, customers blame the OpenMP ‘ Peparse PETeY| 23,547,657,635| 0.545
runtime seeing CPU time consumption there and not #_schedule 16935 4387756538 1151
understanding that this is a result of parallelization inefficiency o Selected 1 row(s):| 172.460s 138,183.698.632 3.713

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCO“ 2018
*Other names and brands may be claimed as the property of others.

Overview of summary pane

Serial Time (outside any parallel rqgucn:l' 4,020 (27.7%)

ation Elapsed Time and scalability. Explore options for parallelization, algorithm or

How efficient is my parallelization towards ideal parallel execution?

How much theoretical gain can | get if invest in tuning?

gement is significant and negatively impacts the application performance and
scal ability. Explore OpenMP regions with the highest metric values. Make sure the workload of the regions is enough and the loop schedule is.

@ Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance emprovemant. The Potential Gain metric shows the elapsed time that
could be saved if the region was optimized to have no load mbalance assuming no runtime overhead.

penMP Region Fotentisl Gain {%J\Lapsed Tirm Which regions are more
sonj grad, $ompdparallel: 24 @/homefviunefwork/apps/NPR/NPRE 3. 1/MPR 3. 3-OMPSCGlcg f:514:605 3,294 22.7% 10,2085 |mportant to analyze?
MaIM__ompparallel: 24 @ homelviunefworkfapps/MPB/MPBEI 3 1/MPB3 3-OMP/CGlcg F185:231 0.059s 0.4% gy
MAIN__ $ompSparallel: 28 @/homelvtunelwork/apps/NPB/NPEI. 3. 1/NPBI. 3-OMPIC Glea - 339:345 0.001s 0.0% o.001s Links to grid view for
MAIN__%omp%parallel: 24 @'homelvitunefworkfapps/MPB/MPB3. 3. 1/MPB3 3-OMP/CG/cg F-361:365 0001 0.0% 0.001s fnore_ d_etalls on
\AIN.. $omptparallel: 24 @/homelvtune/worklapps/NPB/NPBY. 3.1/NPB3 3-OMPICG/cq.f- 263:269 0.000s 0.0% 0.000% inefficiency

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Key to OpenMP awareness in VTune — Region based views

and metrics
Definition of Region Potential Gain (elapsed time metric)

Actual Parallel Region Elapsed Time

Join
FOI‘k (A \/

-~

Effective time (sampling)
B Lock spinning (sampling)
Imbalance (tracing)
Scheduling (sampling)

I Work forking (sampling)

Atomics (sampling)

Potential Gain as a sum of inefficiencies normalized by num of threads

\

Y
Estimated Ideal Time =
Effective time / Number of Threads

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Technology used by VTune Amplifier XE OpenMP Analysis

Tracing of OpenMP constructs to provide region/work sharing context and
precise imbalance at barriers
» Provided to VTune by LLVM/Intel OpenMP Runtime under profiling

— Fork-Join points of parallel regions with number of working threads (Intel Compiler 14 and
later)

— OpenMP construct barrier points with imbalance info and OpenMP loop metadata

— -parallel-source-info=2 Intel compiler option to embed source file name in region name

Looking at transition to OMPT, working with John M-C on interface enrichments for low overhead
analysis

Sampling to define and classify CPU time - user's code and OpenMP RTL work
= Classification: Locking, Scheduling, Work Forking

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other nar and brands may be claimed as the property of others.

VTune Amplifier XE OpenMP Analysis Workflow

Start with HPC Performance Characterization analysis

Explore CPU Utilization metrics related to OpenMP in summary, grid, and
Sou rce VieWS 3 zatio (cha) INTEL VTUNE AMPLIFIER XE 2

& Choose Target and Analysis Type INTEL VTUNE AMPLIFIER XE 20 ©) €PU Utilization : 76.4% &

Average CPU Usage 18.344 Out of 24 Logieal CPUs
O start

A Analysis Type

Parallel Region Time : 77845 (99.7%)
Estimated |deal Time *:
OpenMP Patential

Top OpenMP Regions by Potential Gain

This section Lists OpenMP regions with the highest potential for perfarmance improvement. The Patential Gain metric shows the elapsed time that could be saved if the region

Serial Time 00215 (0.3%)
b by B B HPC Performance Characterization Copy

&5 Algorithm Analysis Analyze important aspects of your application performance, including CPU
utilization with additional details on OpenMP efficiency analysis, memory

usage, and FPU utilization with vectorization information ntime overhead

was cptimized ta have ne load imbalance assuming no

A Basic Hotspots @ Start Paused

A Advanced Hotspots For vectorization optimization data, such as trip counts, data dependencies, "¢\ o = y OpenMP Region OpenMP Patential Gain ' (%) OpenMP Region Time

A Concurrency and memory access patterns, try Intel Advisor, It identifies the loops that L - [qrad_Sompbparallel 2 4@ nomel viune/warkia 1308:% 168K 7.5265

& Locks and Waits will benefit the most from refined vectorization and gives tips for , § parallel 2 4@/home/vtune/work/agps/NF 0048s 06X 02405
improvements. N $sarallel:2 d@/home/utune/work/fapps/N

0.016s 0.2% 0017s
- ¥ Compute-intensive Application Analys)

The HPC Performance Characterization analysis type is best used for 0.001s

0.0% 0.000s

srallel:24@/home/ytune/work/appsiNP

AR E RN GEE ST | analyzing intensive compute applications. Learn more (F1) N__$ ompS parallel:2 4@/ home/stune work/appsiN

~ & Microarchitecture Analysis

CPU sampling interval, ms: 1

/A & applic 1o mon s umMable metris.

A General Exploration
CPU Usage Histagram

A Memory Access Collect stacks
This histogram displays a percentage of the wall time the specific number of CPUs were running s

A TSX Exploration

eously. Spin and Overhead time adds to the Idle CPU usage value

 Analyze memory bandwidth

A TSX Hotspots 257 B 8 5!
A SGX Hotspots Evaluate max DRAM bandwidth 5 EH E
EIRE-S <]l L
- Platform Analysis 1| & Anslyze OpenMP regions] iy i
A CPU/GPU Concurrency Las i c
I 1
1] I
] I
05s. J !
o

CL: >amplxe-cl —collect hpc-performance <my_app>

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of ot

Per-region Details in grid view: inefficiencies in elapsed time
are classified and highlighted

% Advanced Hotspots Hotspots viewpoint (change) Intel VTune Amplifier XE 20

= on & Analy et y D ERAN <& Bottom-up wn Tree| BB Platform
Grouping: | OpenMP Regionffl OpenMP Barrier-to-Barrier Segment / Qunction / Call Stack
OpenMP Potential Gai Number OpenMP o Avg OpenMP
OpenMP R 10 B to-B s t / Function / Call Stack Flapsed of In...| Loop ten Loop
pen egion / Open| arrier-to-Barrier Segment / Function / Call Stac L oop
Imbalance | "= | Creation| Schydfl... Redu... |Atomi... Other | Time |OpenMP Cou..| Schedule Chunk Iteration
Con threads Type Count
Bconj_grad_ompparallel:24@ e efwork/apps/NPB/NPB PB OMP g 4:69 3.944s 0 y 0.0025|0‘00051109 4 6
*iconj_grad_$omp P oop_barrier _segment/iue o . — = 1 3.725s g g " q Static 3125 75,000
*conj-grad_somp#loop_barrier _segment@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f.683 0.149s 0Os Os Os Os Os 0.004s 0418s 24 Static 3125 75,000
*conj-grad_somp%loop_barrier _segment@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg f.625 0.033s Os 0s| 0.002s 0.000s 0s 0.002s 0.068s 24 Static 3125 75,000
*conj-grad_somp¥loop_barrier _segment@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg f.650 0.015s Os 0s 0.000s 0Os 0s 0.001s 0.064s 24 Static 3125 75,000
*conj-grad_somp¥loop_barrier _segment@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg f.664 0.014s Os Os 0.000s Os Os 0.001s 0.079s 24 Static 3125 75,000

Advanced Hotspots Hotspots viewpoint (change) Intel VTune Amplifier XE 2015

i i Sum - C ee| [+% Tc 3 and Frames
Grouping: | OpenMP Reg\ol / OpenMP Barrier-to-Barrier Segmentl Function / Call Stack vl B (&) [H
OpenMP Potential Gain & OpenMP Potential Gain (% of Collection T... Mu. Ope Cpen...
Elap...| of |Ins. pe- Loop
OpenMP Regyn / OpenMP Barrier-to-Barrier Segment / Function / Call Stack Lock Imba...| Lock |Cre..| Scheduli... Red..|Oth.. Loo..
Imba... Cre...| Scheduling [Red..|Oth.| . . . oy | Time |Ope.|Co.| . | Sched..
Con... (%) |Cont..| (%) (36) () | (%) thr .. | Type
Bconj_grad_ompparal' el: 24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:514:695 |0.20...| 0.0..| 0.0 3.127s mm 1.7%| 0.0%|0.0% pNeRy 0.0%| 0.0%
“conj_grad_$o arrier Qibamaidunsiaoclanoa/NERINDES 3 J/NDRS 3 aMB/Co /g fogonan 000 00 Os 3.125s “ER 2 1 Dynamic
*conj_grad_%omp*loop_barrier@/homefvtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:675:683 | 0.12... 0s s Os, 0s 00. 11k 0.0% 0.0% 0.0% 0.0% 0.0% 0.41.. 24 312. Static
*eonj- grad umpl op_barrier@/home/vtune/w kfappaPB)‘NPBS.S.UNPBS 10MP@!cg.f:621:625 Os Os 0.001s 0.0.. 0.0. 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.07.. 24 312. Static
[)y Hi@ngegtynglu IQ/”P@H%F@ %637:@ Os Os 0.000s 0.0.. 0.0. 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.07.. 24 312. Static

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018

*Other names and brands may be claimed as the property of ot

Details in Grid View: Serial Time Hotspots

CPU Utilization

1 25.8% K
Average CPU Usage : 22.674 Out of 88 logical CPUs
Serial Time (outside parallel regions) : 4.559s (32.1%) &
Top Serial Hotspots (outside parallel regions)
This section lists the loops and functions executed serially in the master thread outside of any OpenMP region and consuming the most

CPU time. Improve overall application performance by optimizing or parallelizing these hotspot functions. Since the Serial Time metric
includes the Wait time of the master thread, it may significantly exceed the aggregated CPU time in the table.

Function Module Serial CPU Time
page_fault vmlinux 0.636s
[Loop at line 152 in miniFE::cg_solve<miniFE::CSRMatrix<double, int, int>, miniFE::Vector<d

ouble, int, int>, miniFE::matvec_std<miniFE::CSRMatrix<double, int, int>, miniFE::Vector<dou miniFE.x 0.533s
ble, int, int>>>]

pageblock_pfn_to_page vmlinux 0.486s
miniFE::dot<miniFE::Vector<double, int, int>> miniFE.x 0.412s
std::local_Rb_tree_decrement libstdc++.50.6.0.21 0.330s

™ Advanced Hotspots H

Grouping: | OpenMP Region / Threa

OpenMP Region / Thread / Function
/ Call Stack

“main$ omp §parallel:48@/home/vtu

erial - outside any region]

otspots viewpoint (change)

@ Bottom-up

d [Function / Call Stack

Pot... *B
Poten.. Gain Elapsed CPU
Gain (4of Time Time
Coll...
59115 254

402.739s 880,937,100,

Instructions)
Retired

I # et

Tl Stamcn

B L L R LT Ve

Cldars ST

vor Somp by

=

P p—— o o%

(0] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.

24.004s|
~OMP Master Thread #0 (TID: 227 0s 13.313s 55,703,700, .
T I = seeeo] S€rial hotspots under
+CTetrahedron:GetNode 0s 0.0% 1.2165 | 2,311,200, Master Th read
#_int_malloc 0s 0.0% 0.763s | 5,175,900,
#stdizsort<__gnu_cxoc:__normal 0s 0.0% 0.628s | 3,920,400,
“int_free 0s 0.0% 0.602s | 3,223,800,
#CPhysical Geometry:SetPoint_C 05 0.0% 0.5665] 899,100,
+__libc_malloc 0s 0.0% 0.479s 2,130,300,

Time Filter to exclude
initialization phase

OpenMPCon 2018

*Other names and brands may be claimed as the property of ot

Details on Scalable Timeline

Super tiny timeline display mode — a bird’s eye view showing all data without scrolling

Region frames on the ruler

Qo QO 9 8 8 8.4 8 6 8 8 8.9 9 9 9

Ruler Area
P Region ...

= CoenM...

OpenMP Barrier-to-Bar| Segment
[] @ Effective...
[] @ Spin and...

CPU Time
[¥] duk CPU Time

[] duk Spin and...

Thread

CPU Time

More green => more efficient multithreaded execution / Intel® Xeon Phi™ profiling result with 288 threads

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Details for a Region at source file level

& Bottom-up =
Grouping: [(u.lsbom} OpenMP Region / OpenMP Barrier / Function 2%
OpenMP Potential Gain OpenMP Potential Gain (% of Collection Time) Mum. Ope Ope..
Elaps..| of |Inst.. " | Loo
OpenMP Region / OpenMP Barrier / Function Ffied Lock | | eeheduling | Red Other| IMbalance | Lock | Crea..| Scheduling | Red... | Other | Com T‘ﬁne Ope.. | Count| L2°P sm.‘?. Effective
mbalance | - reation | Scheduling | Reduc... er Con...| (%) %)) | (%) |Sein Chu Time
thre... Type
= conj_grad_ompparallel:24 @/home/vtune/work/apps/NPB/NPB3.3 1/NPB3 3-OMP/CG/cqg.f:514:695 0.206 0 0.000< 5 0.001s 0.00 a| 0.0%| 0.0% g3 00%| 0.0% 0 8 6 99.29
& conj_grad_SompSloop_barrier@/home/vtune/work/apgs/NPB/MNPE3.3.1/NPB3.3-0MP/CG/cg.f:572:580 0.008s Os Os 31255 Os 0.000s 01% 0.0% 00% 259% 00% 00% Os 111035 24 1 Dyna.. 189.318s
& conj_grad_SompSloop_barrier@/home/vtune/work/ap§s/NPB/MNPE3.3.1/NPB3.3-0MP/CG/cg.f675:683 0.127s Os Os (s Os 0.000s 11% 0.0% 00% 0.0% 00% 0.0% Os 04135 24 3125 Static 5,880
& conj_grad_SompSloop_barrier@/home/vtune/work/ap§s/NPB/MNPE3.3.1/NPB3.3-0MP/CG/cg.f660:664 0.0155 Os 2, e O O OLSpo SWpo ange) @ A
conj_grad_SompSloop_barrier@/home/vtune/work/ap§s/NPB/MNPE3.3.1/NPB3.3-0MP/CG/cg.f:537:650 0.020s Os
[conj_grad_SompSloop_barrier@/home/vtune/work/ap fs/NPB/MNPE3.3.1/NPB3 3-0MP/CG/cg.fi621:625 0.028: 0= Y Assembly =29 = %) | @ | Assembly grouping: | Address ~
conj_grad_SompSloop_barrier@/home/vtune/work/ap§s/NPB/NPE3.3.1/NPB3.3-0MP/CG/cg.f:520:527 0.0025 Os =]
S. SSaca cPU Instructions
Li = Time Retired

Optimization Notice

S14

Copyright © 2018, Intel Corporation. All rights reserved.

S1S
516
517

521

S27
528
S29

! Somp

shared(d, rhoo, rho, sum)

do

do j=1,naa+l
q(j) = o.odo
z(3j) = o.odo
r(3) = x(3)
p(3) = r(3)

enddo

end do

OpenMPCon 2018

t$omp parallel default(shared) private(j.k,cgit,suml,alpha,beta)| | i
! Somp&

®

.100,000
.800,000
.700.000
5.400.000

"
o

N

*Other names and brands may be claimed as the property of ot

Intel® Vtune Amplifier Summary

VTune Amplifier XE OpenMP analysis answers customers’ questions about
performance in the language of OpenMP constructs

The analysis scales well for many-core systems with good balance of tracing
and sampling collection technologies

The full feature set is available in VTune Amplifier XE with Intel OpenMP and
Intel MPI runtimes as a part of Intel® Parallel Studio XE

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Software

ADD OPENMP SIMD WITH
INTEL® (VECTOR) ADVISOR

ee

Intel Advisor: 5 tools for Efficient Vectorization and
Memory utilization

efficiency information

1. Compiler diagnostics + Performance Data + SIMD

2. Guidance: detect problem and recommend how to
fix it

A\ D I lecoio) present

Self

Total

3. “Precise” Trip Counts & FLOPs. Roofline analysis.

not executing in the kernel loop. Improve performance by moving
mainder loops to the kernel loop. Read more at Vector Essentials,

nemory access
gain: High

op because one of the memory accesses in the source loop does not
e memory access and tell the compiler your memory access is aligned.
ng a 32-byte boundary:

Function Call Sites and Loopsa Timel | Time []
[{loop in runCForallLambdaloops| 00845 00845 [Characterize your application.
[loop in runCForaliLambdal oops] 01405 37445 []
BV [loop i std:; Complex_base<double,struct C double complexszi... | 00315 00315 Farbamance (L0 = . - =
Vectorized S5E; S5L2 loop processing Float32: Floatf4 data type(s) having Di wzs
Peeled loop; Loop stmts were reordered
[{loop in stdzbasic_string<char struct std:ichar traits <char> class stdvallo. 0,005 3440, B FLOPS And AVX-512 Mask Usage &2 /"'
[loop in ste:basic_string<char,struct stdk:char traits ¢chars class stdvallo.., 0.0005 5440, [] GFLOPS Al Mask Utilization _—
[{loop in stdznurm_put<char,class stdzostreambuf_teratar<char struct st~ 0.0005 12345 B -
79,2% . ® .
. A .
50,0% == . ts) ® .,_,__t_
[e
5% — 8 .

4. Loop-Carried Dependency Analysis

D @ Type Site Name Sources Modules State
F1 @ Parallel site information site2 dqtestZ.cpp dqtest2 + Mot a problem
P2 @ Read after write dependency site2 dqtest2.cpp dqtest2 Re hew

@ Read after write nepenaency site2 dqtest2.cpp uqtesrz R hew
IZI gtest2 | New

& Wiite after write dependency site2 dqhast? cpp dqtest? e Mew
P& @ Wiite after read dependency site2 dqtest2.cpp dqtest2 R Mew
F7 @ Wiite after read dependency site2 dqtest2.cpp. idle.h dgtest2 Re Mew

79,2%

o011

me 0.351 5 Total Time: 0.351

= 5. Memory Access Pattern Analysis

C(ARRAY_SIZE*sizeof(float), 32);

);

(6] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.

OpenMPCon 2018

*Other names and brands may be claimed as the property of ot

Site Name Site Function’ ate Info Loop-Carnied Strides Access Pattern
loop_site 203 runCRawLoops runCRawloops.cocl063 @ RAW:L No information available No information available
loop_site_139 CRawl runCRawl o622 No available 399 36% / 29 Mixed strides
loop_site_160 Rawl runCRawl 925 No available 100% /0% /0% Al unit strides

Memory Access Patterns
) @ Stidew Type Source Modules Alignment
2p2 @ 001 Unit stride runCRawLoops.coc637 _ lcals.exe

€37
#P23 @ o0 Unit stride runCRawloops.coc638 Icals.exe
P30 @ -1575;-63;-26; -25; -1:0; 1; 25; 26; 63; 2164801 Variable stride runCRawloops.coc628 _lcals.exe

= b(31)(11):

plipl (2]

Advisor Survey: vectorize and improve SIMD code
perfo rmanCe! @ Mot Vectorized

[;zst;un Call Sites and s W :EdUrIZEd.L.DUFIS . Instruction Set Analysis @ Program i
Er:t..”EfﬁclEncyv I|Ga|n.‘.|\fL.. Traits |Data T, Elapsed Time: 17,1ds
lloopins241_atlo... [] A [ST 1776 8 Float32 Vecter Instruction Set: AVAZ, AVX512 Nurnber of CPU Threads: 1
[loop in s132s_atle.. O A2 E?ﬁ% TTx |8 FMA Float32|
[loop in s432_atlo.. [@ 1Data type conversions present AVH2 E?ﬁ% TTx |8 FMA; Type Con... Float32 @ I-“P metrics
[loopins413_atlo.. [@1 Ineffective peeled/remainder ... AVX2 E?ﬁ% T6% (428 FMA Float32| Total CPU Gime 17,065 _ 100,0%
[loep in s273_atlo.. [] | @ 1Possible inefficient memory a.. AVi2 E?ﬁ% T6% |8 FMA; Masked St... Float32 - - -
lloopins279_atlo.. [| @ 3Possible inefficient memory a.. AVX2 [C05% 756« 8 Blends FMA Y Float32 Time in 16 vectorized loops ATis I 2:0%
lloopins253_atlo.. [] @ 2Possible inefficient memory a. AvX2 | [C01% 730k 8 Blends FMA Float32 Time in scalar code 12,295 () 72,0%
[loopins23l_atlo.. [AVA2 | [=50% 72 8 FMA 4 Float32 @ Vectorization Gnin,.l’iﬂiciln:y'
[loopins271_atlo.. [| @ 2Possible inefficient memory a. AVx2 | [200% T16x 48 FMA: Masked St..; Float32| Vectorized Loops Gain/Efficiency 414 57%]
[loep in vif_at loop .. [] | @ 1Possible inefficient memory a. AV ~86% 690x |8 Blends Float32| P ™ |G 188
lloopins274_atlo.. [] | @ 1Possible inefficient memorya. AVX2 [SI9% 629 2 Blends; FMA; M. Float32 rogram Thearetical Gain i
[loopin SET2D atm... [] Avk [EFEE]s8m 8 Float32
[loop in std:_Fill<fl.. [] AVK 531x 8 Float32)
[loopin SET2D atm.. [@ 1Datatype conversions present AVX2 [SB6% 531k |8 Divisiens; Type .. Float32) -550/0
2.19X mom |
Issue: Assumed dependency present Vectorization Gain Vectorization Efficiency

Issue: Ineffective peeled/remainder loop(s) present

All or some source loop iterations are not executing in the loop body. Improve performance by moving soul Effl = f
Recommendation: Add data padding ICIency y per Or ance
The trip count is not a multiple of vector length. To fix: Do one of the following:

* Increase the size of objects and add iterations so the trip count is a multiple of vector length. th e rl I I 0 I I l ete r

+ Increase the size of static and automatic objects, and use a compiler option to add data padding

I windows* OS | Linux* 0OS |

B O T T S AT « Recommendations - get tips on how

MNote: These compiler options apply only to Intel® Many Integrated Core Architecture (Intel® MIC Archi

When you use one of these compiler options, the compiler does not add any padding for static and aut to i m p rove pe rfo rm a n Ce, i n pa rt i C u la r

application. To satisfy this assumption, you must increase the size of static and automatic objects in

Optional: Specify the trip count, if it is not constant, using a directive:[#pragma loop_count] u Si n g O p e n M P 4.* a n d la‘te r!

Read More:

* gopt-assume-safe-padding, Qopt-assume-safe-padding;

Optimization Notice

loop_count

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of ot

Advisor Dependencies: The Answer to Tough
SIMD/Threading Question #1!

Is it safe to force the compiler to vectorize?
" ‘The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependancy (Read after write - RAW) in the

loop. Improve performance by investigating the assumption and handling accordingly.

7 Enable vectorization
Potential performance gain: Information not available until Beta Update release

void scale (lnt *a , int *b) Confidence his resommendason spplies toyour code. nformation notavallable unilBea Update relesse
Do I = 1 p N { x:f;g;;:n:;;;:;‘:;[(:;‘l:vlnsn;\zrr!:l\j:jr:&s::gr(y in the loop for the given workload. Tell the compiler it is safe
= - * S s o Sgragma o 5o | TS 2 o oo 530 | ores o deperdence e oo
A(I) = a(1-1) * B(I) for (int i = 0; i < 1000; i++) [T
ENDDO b3 _ * 99 . Read More:
[l] =z a [l] 4 User and Reference Cuids for the Intel C- - Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific
} Pragﬂrr:: ::I:eren(e >
© omp simd
summary Y5 Survey & Roofline ™i Refinement Reports
Site Location Loop-Carried Dependencies
FE [loop in find_bg at Im.c:262] @ Mo Dependencies Found Safe to VeCtOI’IZG (at least for |Ven
El[loop in live_get_partialhyp at live.c:192] @MNo Dependencies Found< i g
El[loop in live_get_partialhyp at live.c:177] @ Mo Dependencies Found | WO rkload)’ use OM P SI M D!
[loop in feat_s2mfc2feat_block at feat.c:1045] @ Mo Dependencies Found
El[loop in parse_tmat_senmap at mdef.c:389] & potential Reduction:1
[loop in subvg_init at subvg.c:271] & potential Reduction:1 -
[Ioop in utt_decode_block at utt.c:1125] & potential Reduction:1 Use OM P redUCtlon (also for
lloop in utt_decode block at utt.c:1024] & potential Reduction:2 1 ! th read i ng)[
[l [loop in vector_gautbl_eval_logs3 at vector.c:524] & potential Reduction:2 e c— __:
[loop in vithist_backtrace at vithist.c775] @ Raw:
Bllloop in glist free at giist.c230 @ Raw1 True dependence proven, not way
[loop in feat_s2mfc2feat_block at feat.c:1041] @ Rraw:1 | . .
El[loop in vithist_Imstate_reset at vithist.c:462] @Raw:1 & potential Reduction:1 | ti) Eirauellze W!Ehggt eXtrg Wgrk,
El[loop in utt_end at utt.c:219] @Rravw: & potadtial Bl
#E [loop in utt_decode_block at utt.c:944] @Rraw: HwakT & potential Reduction:

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of oth

Intel Advisor gives recommendations to guide you
where and how to add OpenMP SIMD!

What issues must Which loops
to be fixed? are vectorized?

™
=
“

§ [=]' Function Call Sites and Loops™ ! ™, % Performance Issues Total Time Type Why No Vectorization?
[E N
% Eilv] [loop in lextree_hmm_eval at lextree.c:615] [] @ 2 User function call(s) present 7,606s! Scalar & loop control variable was found, but ...

=0 [loop in lextree_enter at lextree.c:543] [0 @1 Inefficient memaory access pa.. 2,340s! Scalar @ loop control variable was not identified. ...t

=10 [loop in lextree_enter at lextree.c:536] O 0,020s! Scalar [

< > < >

Source | Top Down | Code Analytics | Assembly | % Recommendations | B Why No Vectorization?

All Advisor-detectable issues: C++ | Fortran " User function call(s) present Read more abOUt the ISSUE and
o Issue: User function call(s) present izi e ::l | What tO mOd ify in your COde tO le
User-defined functions in the loop body are preventing the ca o e B . .
it (to enable vector parallelism!)

- e patterns present
Recommendation: Vectorize user function(s) inside loop Reorder loops
These user-defined function(s) are not vectorized or inlined by the compiler: hum_vit_eval 3st() To fix: Do one of the following:

Example @

e ' = In more detail: which function is

R “causing the problem?

4#pragma omp simd

o ¥ < e ' Add OpenMP SIMD: reference
e - 2 example

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

More examples: also threading aware..

o Issue: OpenMP function call(s) present Confidence level low

OpenMP* function call(s) in the loop body are preventing the compiler from effectively vectorizing the loop.

Recommendation: Move OpenMP call(s) outside the loop body C

OpenMP calls prevent automatic vectarization when the compiler cannot move the calls outside the loop body, such as when OpenMP calls are not invariant. To fix:

1. Split the OpenMP paraliel loop

2. Move the OpenMP calls outside the loop when possible

H Example

: Original code:

| #pragma omp parsllel for private(tid, nthreads)

H for (int k = @; k < Nj k++) Recommendation: Change the floating point model e

H {

B tid = omp_get thread_num(); // this call inside loop Your application calls serialized versions of math functions when you use the strict floating point medel. To fix: Do one of the following:
E nthreads = omp_get_num_threads()}; // this call

: « Usethe fast floating point model to enable more aggressive optimizations or the precise floating point model to disable optimizations that are not value-safe on fast transcendental functions
H H

Windows™ 0S8 Linux* 08

H ffp-fast -fp-model fast

H Revised code: ffp-precise /Qfast-transcendentals | -fip-model precise -fast-transcendentals

E #pragma omp parallel private(tid, nthreads} . .

H 1 CAUTION: This may reduce floating point accuracy.

E /f Move OpenMP calls here

H tid = omp_get_thread_num(); « Usethe precise floating point model and enforce vectorization of the source loop using a directive: #pragma simd or #pragma omp simd
B nthreads = omp_get_num_threads();

| Example: (=)

E #pragma omp for nowait

H for (int k = @; k ¢ Nj k++) gce program.c -02 -fopenmp -fp-model precise -fast-transcendentals

B {

E B #pragma omp simd collapse(2)

= 3 Tor (1=0; 1<N; 1++)

: 1

H ali] = b[i] * c[il;

H Read More: fFor (i=8; i<; i++)

: i

H = omp for, omp parallel recommendations dril = e[il * f[il;

H » Getting_Started with Intel Compiler Pragmas and Dir T

H ¥

Recommendation: Remove OpenlP lock functions Co/moermeT=rer T |

0 ation Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of ot

Software

ROOFLINE IN INTEL" ADVISOR

Slides by Alex Shinsel

What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

Performance (GFLOPS) k(@] « + x © | [Use Single-Threaded Roofs @ =

= Where are the bottlenecks?

42.16 Vector FMA Peak |j:9ingle-_thtaadéc]}-u42 1 6.GFLOPS

e P Vector Add Pegk faigle-threadsdy 7289 GFLOPS

* How much performance is
being left on the table?

= Which bottlenecks can be

addressed, and which should
* ange ™ e r
be addressed? - e -
. What,s the mOSt likely Cause? o Arithmetic:Intensily{F?_-g)zpryle}

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

" Wh at are th en eXt Ste ps? Cache-aware variant proposed by University of Lisbon:

Cache-Aware Roofline Model: Upgrading the Loft, 2013

Optimization Notice

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Metrics

Roofline is based on FLOPS and Arithmetic Intensity (Al).
SpMV FFTs N-body

» FLOPS: Floating-Point Operations / Second

= Arithmetic Intensity: FLOP / Byte Accessed

Low Al

Collecting this
information in
Intel® Advisor
requires two
analyses.

OpenMPCon 2018

Classic vs. Cache-Aware Roofline

Intel® Advisor uses the Cache-Aware Roofline model, which has a different
definition of Arithmetic Intensity than the original (“Classic”) model.

Classical Roofline

« Traffic measured from one level of memory (usually DRAM)
« Al may change with data set size
Al changes as a result of memory optimizations

Cache-Aware Roofline

« Traffic measured from all levels of memory
« Al is tied to the algorithm and will not change with data set size
« Optimization does not change Al*, only the performance

*Compiler optimizations may modify the algorithm, which may change the Al.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
and e

Plotting a Roofline Chart

A
FLOPS

>
Arithmetic Intensity
FLOP/Byte

OpenMPCon 2018

Ultimate Performance Limits

Performance cannot exceed the
machine’s capabilities, so each loop is
A ultimately limited by either compute
FLOPS or memory capacity.

@ N

O

Ultimately Ultimately o
Memory-Bound Compute-Bound

>

Arithmetic Intensity
FLOP/Byte

Optimization Notice

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Sub-Roofs and Current Limits

4 ne ne ne
C C
FLOPS W (oc \2 Cac 3 Ce

Vector with FMAs

. Vector

Scalar

>

Arithmetic Intensity
FLOP/Byte

Copyright ® 2018, Int r i i d. OpenMPCon 2018
*Other names

The Intel® Advisor Roofline Interface

Performance (GFLOPS) k @ M« x B~ | Use Single-Threaded Roofs| —»
Roofs are based on benchmarks - L2 Banawith O o766 |obsc™
. . 497 L3 Bandwidth O GBlse
run before the application. B O [im e
. SP Vector FMA Peak [] O GFLO
= Roofs can be h|dden, SP Vector Add Peak [] 0O [s201 cro
; : ; .| DP Vector FMA Peak GFLO
highlighted, or adjusted. 07 vector Pl P —
. . - Scalar Add Peak O GFLO
Intel® Advisor has size- and colour-
COding for dOtS' Loop Weight Representation Cancel Default
. Color
= Colour code by duration or s
vectorization status * oo kb | lgeen |
S & = Threshold Velue [15 %
. . 1.8 & 7
= Categories, cutoffs, and visual "7 ¢ o ¥/ O b] boow |
. i 2 = Threshold Value -29 %
style can be modified. 00os °
Self Elapsed Time: 18.371s Total Time: 18.371 s s |8 | |red | X

Optimization Notice

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

ldentifying Good Optimization Candidates

Focus optimization ~ GFLOPs/S ANIPO LG
effort where it makes

the most difference. CPU Cap: FMAs

>

= Large, red loops
have the most
impact.

CPU Cap: Vector Add

» Loops far from the
upper roofs have
more room to
improve.

O_cpru Cap: Scalar Add

>
Arithmetic Intensity (FLOPs/Byte)

e
OpenMPCon 2018 (intel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ldentifying Potential Bottlenecks

F|nal roofs do apply, Performance (GFLOPS) @ Q M « x B - | Us =

sub-roofs may apply. 5521 - ! .

= Roofs above indicate
potential bottlenecks

= Closer roofs are the most
likely suspects

» Roofs below may
contribute but are
generally not primary 0.89 g

bottlenecks 0037 094
Self Elapsed Time: 13.734s Tofal Time: 13.734 s Arithmetic Intensity (FLOP/Byte)

T
; (intel

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
R and e

Feature Synergy

Overcoming the Scalar Add Peak @_

Survey and Code Analytics tabs
indicate vectorization status with
colored icons.

(5 = Scalar = Vectorized

*Why No Vectorization” tab and
column in Survey explain what
prevented vectorization.

Recommendations tab may help
you vectorize the loop.

Dependencies determines if it's
safe to force vectorization.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

»
»

Summary % Survey & Roofline ™ Refinement Reports

i Vectorized Loops B~
= Function Call Why No Vectorization? = :
Sites and Loops Vector... | Efficiency |Ga|n E. |VL (Ve.
B} [loop in fPropagation® @ vector dependence prevents...
[loop in fCalcPotential_ AVX 26% 1.05x% 4 v
< > < >

Source ‘ Top Down ‘ Code Analytics ‘ Assembly ‘Q Recommendations ‘ﬁ Why No Vectorization? ‘

Issue: Assumed dependency present “ Assumed dependency present

The compiler assumed there is an anti-dependency (Write after Confirm dependency is real

read - WAR) or a true dependency (Read after write - RAWY) in Potential underutilization of FMA

the loop. Improve performance by investigating the assumption instructions
and handling accordingly. Target the higher ISA
C_): Recommendation: Confirm dependency is real v

D ‘ @, ‘Type ‘Sources ‘Modules ‘SlteName State

P3 @ Read after write dependency |bpGET.cpp slbe.exe loop_site_51 R New

ID ‘Instruction ‘Desc... ‘Function ‘Source ‘Variable refer...‘Module ‘State "‘
X4 0x140088772 Read fsBGKShanChen Ei lbpGET.cpp:155 register X{MM5 slbe.exe R New
X5 0x140088772 Write fsBGKShanChen E IbpGET.cpp:155 register X{MM5 slbe.exe R New v

OpenMPCon 2018

Feature Synergy
Overcoming the Vector Add Peak

S u rvey a n d C O d e A n a ly‘ti Cs d i S p lay t h e 5 Function Call Sites and Loops Vectorized L-m-jpsv : Inst-ructicn Set Analysis
VECID[.‘.|EﬁI[IEnCy ‘Gam E.. ‘VL (Ve..|Traits ‘Data Typ.. ‘ Num..
vector efficiency and presence of FMAs. S loopmmanmcotecpren |an DO & s
4 AR
| Reco m m e n d ati o n S m ay h e l p i m p rove Source ‘ Top Down | Code Analytics | Assembly | '+ Recommendations | & Why No Vectorization?
L. . Loop in main at roofline.cpp:247 Average Trip Counts: 166
efficiency or induce FMA usage. 2 3125
Vectorized (Body) Total time

| Address |Line| Assembly |

AVX; FMA 7.312s

Instruction Set Self time

. |

31% Vectorization Efficiency

0x14000155d 262 vfmadd132pd ymm1, ymm3, ymmword ptr [rsi+rcx8+0

0x140001567 262 vaddpd ymm2, ymm1, ymm3 The Assem bly tab*
0x140001574 262 vaddpd ymmd4, ymm2, ymm3 |S u Sefu l fo r

0x14000157¢ 262 vfmadd132pd ymms, ymm?1, ymmword ptr [rsi+rcx8+0x23aa0] determ | n | ng hOW
0x14000158f 262 vaddpd ymms, ymms, ymm?

0x140001593 262 vaddpd ymm2, ymm5, ymm?1 Well you are making
use of FMAs.

*Color coding added for clarity.

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

| Address |Line‘

Assembly ‘

Feature Synergy

Overcoming the Memory Bandwidth Roofs

»
»

M emory Access Patte rns (MAP) Summary % Survey & Roofline ™7 Refinement Reports

. Site Location ‘Strides Distribution |Access Pattern |Max. Site Footprint | Recommendations

Identlfles I neffICIent access patte rns_ O [loop in main at roofline.cpp:1.. | 0%/ 100% / 0% All const strides 38KB 21 Inefficient me...

O [loop in main at roofline.cpp:1 ... 50% / 50% / 0% Mixed strides | 10KB 2 1 Inefficient me...
[loop in main at roofline.cpp:1 ... 100% / 0% / 0% All unit strides | 9KB

I nte l® S I M D Data Layo ut Te m p lates Memary Access Patterns Report ‘ Dependencies Report ‘ ¥ Recommendations ‘

(intel” SDLT) allows code written as (5, ¢ 1™ e Shcarmrs o
AOS tO be Stored as efficient SOA. Hp2 @ 2 Constant stride roofline.cpp:127 AoS1.X 10KB Write
O+ 0s 2s 40s |] pRAM Bandwidth =
™ . . £ 157 A [~] Average Bandwidth, GB
Intel® VTune™ Amplifier can be used m W

to further optimize cache usage.

W
Grouping:| Function / Call Stack “|[%][2] %]
[Nl

. Function / Call Stack CPUTime ¥ T — ‘ anr‘zm(‘wgo;zzm | T ——

If cache usage cannot be improved, Fropsgatonsways] 55400 G 57 AT

. . fCalcPotential_Shan 21.987s (D 5.4% 4.9% 3.7% 68.5%

try re'Work|ng the algonthm tO fCollisionBGKSomp§ 21.168s (D 11.1% 0.0% 0.0% 0.1%

. . fCalcinteraction_Shz 12.724s [l 9.2% 0.6% 0.2% 0.9%
INCrease the AI (and Sl|de up the rOOf) fCollisionBGKSomps 11.125s WM 4.7% 3.4% v

£ b IR 4 >

Optimization Notice

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Intel® Advisor Roofline Summary

rmance (GFLOPS) k@ « + X @ | [Use SingleThreaded Roofs &
16 — —
N Ve 1A déd): 42.16.GFLOPS
20112 == P Ve d Pegk hisgisd; 7389, GFLOPS
- mgﬁdaf‘ -
R
S .
5
A pad

Do mB

Intel® Advisor's Roofline Chart is highly customizable and easy to generate.

072
Arithmetic Intensity (FLOP/Byte)

Lets you identify the best optimization candidates by focusing on low, large
loops.

Use the chart to identify the most likely bottlenecks.

Intel® Advisor’'s many other features allow deep analysis of suspected problems

and provide advice on how to overcome them.
@D |

right © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
and brands may be claimed as the property of others.

Overall Conclusions:

Tuning requires analysis of what's really happening in the code
= Qur guesses are frequently wrong
We also need to understand the potential for improvement

Intel tools (Vtune Amplifier, Advisor and Inspector) can help

Download Intel Parallel Studio XE (includes all the tools and other goodies) and
try it.

* Free for students, teachers, Open Source contributors.
* Free evaluation licenses for everyone else.

= Or you can even pay money!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright ® 2018, Intel Corporation. All rights reserved. OpenMPCon 2018
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

